Sabtu, 24 Oktober 2015

Korosi atau Proses perkaratan

1. Definisi / Pengertian Korosi


Korosi atau Perkaratan berasal dari bahasa latin ”Corrodere” yang berarti perusakan logam. Adapun definisi korosi sebagai berikut.
–          Korosi adalah proses degradasi atau deteorisasi perusakan material yang terjadi disebabkan oleh pengaruh lingkungan sekelilingnya.
–          Korosi adalah perusakan material tanpa perusakan mekanis.
–          Korosi adalah Kebalikan dari metalurgi ekstraktif.
–          Korosi adalah proses elektrokimia dalam mencapai kesetimbangan thermodinamika suatu sistem.
–          Korosi adalah reaksi antara logam dengan lingkungannya.
Korosi adalah suatu penyakit dalam dunia teknik, walaupun secara langsung bukan merupakan produk teknik. Adanya studi tentang korosi adalah usaha untuk mencegah dan mengendalikan kerusakan supaya serangannya serendah mungkin dan dapat melampaui nilai ekonomisnya, atau umur tahannya material lebih lama untuk bisa dimanfaatkan. Caranya dengan usaha prefentif atau pencegahan dini untuk menghambat korosi. Dan hal ini lebih baik dari pada harus mengeluarkan biaya perbaikan yang tidak sedikit akibat serangan korosi.
Korosi pada logam terjadi akibat interaksi antara logam dan lingkungan yang bersifat korosif, yaitu lingkungan yang lembap (mengandung uap air) dan diinduksi oleh adanya gas O2, CO2, atau H2S. Korosi dapat juga terjadi akibat suhu tinggi. Korosi pada logam dapat juga dipandang sebagai proses pengembalian logam ke keadaan asalnya, yaitu bijih logam. Misalnya, korosi pada besi menjadi besi oksida atau besi karbonat.

4Fe(s) + 3O2(g) + 2nH2O(l) → 2Fe2O3.nH2O(s)
Fe(s) + CO2(g) + H2O(l) → Fe2CO3(s) + H2(g)

Oleh karena korosi dapat mengubah struktur dan sifat-sifat logam maka korosi cenderung merugikan. Diperkirakan sekitar 20% logam rusak akibat terkorosi pada setiap tahunnya.

Logam yang terkorosi disebabkan karena logam tersebut mudah teroksidasi. Menurut tabel potensial reduksi standar, selain logam emas umumnya logam-logam memiliki potensial reduksi standar lebih rendah dari oksigen.

Jika setengah reaksi reduksi logam dibalikkan (reaksi oksidasi logam) digabungkan dengan setengah reaksi reduksi gas O2 maka akan dihasilkan nilai potensial sel, Esel positif. Jadi, hampir semua logam dapat bereaksi dengan gas O2 secara spontan.

Beberapa contoh logam yang dapat dioksidasi oleh oksigen ditunjukkan pada persamaan reaksi berikut.

4Fe(s) + O2(g) + 2nH2O(l) → 2Fe2O3.nH2O(s)                  Esel = 0,95 V
Zn(s) + O2(g) + 2H2O(l) → Zn(OH)4(s)                                Esel = 0,60 V
2. Jenis-jenis Korosi
Adapun beberapa jenis korosi yang umum terjadi pada logam sebagai berikut.

1.     Korosi Galvanis (Bemetal Corrosion)

Disebut juga korosi dwilogam yang merupakan perkaratan elektrokimiawi apabila dua macam metal yang berbeda potensial dihubungkan langsung di dalam elektrolit yang sama. Elektron akan mengalir dari metal yang kurang mulia (anodik) menuju ke metal yang lebih mulia (katodik). Akibatnya metal yang kurang mulia berubah menjadi ion-ion positif karena kehilangan elektron. Ion-ion positif metal bereaksi dengan ion-ion negatif yang berada di dalam elektrolit menjadi garam metal. Karena peristiwa ini, permukaan anoda kehilangan metal sehingga terrbentuk sumur-sumur karat atau jika merata akan terbentuk karat permukaan.
2.     Korosi Sumuran (Pitting Corrosion)

Adalah korosi yang terjadi karena komposisi logam yang tidak homogen dan ini menyebabkan korosi yang dalam pada berbagai tempat. Dapat juga adanya kontak antara logam, maka pada daerah batas akan timbul korosi berbentuk sumur.











3.     Korosi Erosi (Errosion Corrosion)

Logam yang sebelumnya teleh terkena erosi akibat terjadinya keausan dan menimbulkan bagian-bagian yang tajam dan kasar. Bagian-bagian inilah yang mudah terserang korosi dan apabila terdapat gesekan maka akan menimbulkan abrasi yang lebih berat.








4.     Korosi Regangan (Stress Corrosion)



Gaya-gaya seperti tarikan (tensile) atau kompresi (Compressive) berpengaruh sangat kecil pada proses pengkaratan. Adanya kombinasi antara regangan tarik (tensile stress) dan lingkungan yang korosif, maka akan terjadi kegagalan material berupa retakan yang disebut retak karat regangan.






5.     Korosi Celah (Crevice Corrosion)


Korosi yang terjadi pada logam yang berdempetan dengan logam lain atau non logam dan diantaranya terdapat celah yang dapat menahan kotoran dan air sebagai sumber terjadinya korosi. Konsentrasi Oksigen pada mulut lebih kaya dibandingkan pada bagian dalam, sehingga bagian dalam lebih anodik dan bagian mulut menjadi katodik. Maka terjadi aliran arus dari dalam menuju mulut logam yang menimbulkan korosi.
Atau juga perbedaan konsenrasi zat asam. Diamana celah sempit yang terisi elektrolit (pH rendah) maka terjadilah sel korosi dengan katodanya permukaan sebelah luar celah yang basah dengan air yang lebih banyak mengandung zat asam dari pada daerah dalam yang besifat anodik. Maka dari snilah terjadinya korosi dengan adanya katoda dan anoda.

3. Mekanisme / Proses Terjadinya Korosi pada Besi

Oleh karena besi merupakan bahan utama untuk berbagai konstruksi maka pengendalian korosi menjadi sangat penting. Untuk dapat mengendalikan korosi tentu harus memahami bagaimana mekanisme korosi pada besi. Korosi tergolong proses elektrokimia, seperti yang ditunjukkan pada Gambar 1.

Besi memiliki permukaan tidak halus akibat komposisi yang tidak sempurna, juga akibat perbedaan tegangan permukaan yang menimbulkan potensial pada daerah tertentu lebih tinggi dari daerah lainnya. Pada daerah anodik (daerah permukaan yang bersentuhan dengan air) terjadi pelarutan atom-atom besi disertai pelepasan elektron membentuk ion Fe2+ yang larut dalam air.

Fe(s) → Fe2+(aq) + 2e

Elektron yang dilepaskan mengalir melalui besi, sebagaimana elektron mengalir melalui rangkaian luar pada sel volta menuju daerah katodik hingga terjadi reduksi gas oksigen dari udara:

O2(g) + 2H2O(g) + 2e → 4OH(aq)

Ion Fe2+ yang larut dalam tetesan air bergerak menuju daerah katodik, sebagaimana ion-ion melewati jembatan garam dalam sel volta dan bereaksi dengan ion-ion OH membentuk Fe(OH)2. Fe(OH)2 yang terbentuk dioksidasi oleh oksigen membentuk karat.

Fe2+(aq) + 4OH(aq) → Fe(OH)2(s)
2Fe(OH)2(s) + O2(g) → Fe2O3.nH2O(s)

Reaksi keseluruhan pada korosi besi adalah sebagai berikut (lihat mekanisme pada Gambar 2) :

4Fe(s) + 3O2(g) + n H2O(l)    →      2Fe2O3.nH2O(s)
                                                               Karat

Akibat adanya migrasi ion dan elektron, karat sering terbentuk pada daerah yang agak jauh dari permukaan besi yang terkorosi (lubang). Warna pada karat beragam mulai dari warna kuning hingga cokelat merah bahkan sampai berwarna hitam. Warna ini bergantung pada jumlah molekul H2O yang terikat pada karat.


Gambar 2. Mekanisme korosi pada besi.
Emas dengan potensial reduksi standar 1,5 V lebih besar dibandingkan potensial reduksi standar gas O2 (1,23 V) sehingga emas tidak terkorosi di udara terbuka. Di alam emas terdapat sebagai logam murni.

4. Faktor-Faktor yang Mempengaruhi / Penyebab Korosi
Korosi dapat terjadi jika ada udara (khususnya gas O2) dan air. Jika hanya ada air atau gas O2 saja, korosi tidak terjadi. Adanya garam terlarut dalam air akan mempercepat proses korosi. Hal ini disebabkan dalam larutan garam terdapat ion-ion yang membantu mempercepat hantaran ion-ion Fe2+ hasil oksidasi.

Kekerasan karat meningkat dengan cepat oleh adanya garam sebab kelarutan garam meningkatkan daya hantar ion-ion oleh larutan sehingga mempercepat proses korosi. Ion-ion klorida juga membentuk senyawa kompleks yang stabil dengan ion Fe3+. Faktor ini cenderung meningkatkan kelarutan besi sehingga dapat mempercepat korosi.

5. Pengendalian / Cara Pencegahan Korosi

Korosi logam tidak dapat dicegah, tetapi dapat dikendalikan seminimal mungkin. Ada tiga metode umum untuk mengendalikan korosi, yaitu pelapisan (coating), proteksi katodik, dan penambahan zat inhibitor korosi.

a. Metode Pelapisan (Coating)

Metode pelapisan adalah suatu upaya mengendalikan korosi dengan menerapkan suatu lapisan pada permukaan logam besi. Misalnya, dengan pengecatan atau penyepuhan logam. Penyepuhan besi biasanya menggunakan logam krom atau timah. Kedua logam ini dapat membentuk lapisan oksida yang tahan terhadap karat (pasivasi) sehingga besi terlindung dari korosi. Pasivasi adalah pembentukan lapisan film permukaan dari oksida logam hasil oksidasi yang tahan terhadap korosi sehingga dapat mencegah korosi lebih lanjut.

Logam seng juga digunakan untuk melapisi besi (galvanisir), tetapi seng tidak membentuk lapisan oksida seperti pada krom atau timah, melainkan berkorban demi besi. Seng adalah logam yang lebih reaktif dari besi, seperti dapat dilihat dari potensial setengah reaksi oksidasinya:

Zn(s) → Zn2+(aq) + 2e–                                    Eo = –0,44 V
Fe(s) → Fe2+(g) + 2e–                                       Eo = –0,76 V

Oleh karena itu, seng akan terkorosi terlebih dahulu daripada besi. Jika pelapis seng habis maka besi akan terkorosi bahkan lebih cepat dari keadaan normal (tanpa seng). Paduan logam juga merupakan metode untuk mengendalikan korosi. Baja stainless steel terdiri atas baja karbon yang mengandung sejumlah kecil krom dan nikel. Kedua logam tersebut membentuk lapisan oksida yang mengubah potensial reduksi baja menyerupai sifat logam mulia sehingga tidak terkorosi.

b. Proteksi Katodik

Proteksi katodik adalah metode yang sering diterapkan untuk mengendalikan korosi besi yang dipendam dalam tanah, seperti pipa ledeng, pipa pertamina, dan tanki penyimpan BBM. Logam reaktif seperti magnesium dihubungkan dengan pipa besi. Oleh karena logam Mg merupakan reduktor yang lebih reaktif dari besi, Mg akan teroksidasi terlebih dahulu. Jika semua logam Mg sudah menjadi oksida maka besi akan terkorosi. Proteksi katodik ditunjukkan pada Gambar 3.
Gambar 3. Proses katodik dengan menggunakan logam Mg.
Reaksi yang terjadi dapat ditulis sebagai berikut.

Anode      :  2Mg(s) → 2Mg2+(aq) + 4e–
Katode     :  O2(g) + 2H2O(l) + 4e– → 4OH–(aq)
Reaksi      :  2Mg(s) + O2(g) + 2H2O → 2Mg(OH)2(s)

Oleh sebab itu, logam magnesium harus selalu diganti dengan yang baru dan selalu diperiksa agar jangan sampai habis karena berubah menjadi hidroksidanya.

c. Penambahan Inhibitor

Inhibitor adalah zat kimia yang ditambahkan ke dalam suatu lingkungan korosif dengan kadar sangat kecil (ukuran ppm) guna mengendalikan korosi. Inhibitor korosi dapat dikelompokkan berdasarkan mekanisme pengendaliannya, yaitu inhibitor anodik, inhibitor katodik, inhibitor campuran, dan inhibitor teradsorpsi.

1) Inhibitor anodik

Inhibitor anodik adalah senyawa kimia yang mengendalikan korosi dengan cara menghambat transfer ion-ion logam ke dalam air. Contoh inhibitor anodik yang banyak digunakan adalah senyawa kromat dan senyawa molibdat.

2) Inhibitor katodik

Inhibitor katodik adalah senyawa kimia yang mengendalikan korosi dengan cara menghambat salah satu tahap dari proses katodik, misalnya penangkapan gas oksigen (oxygen scavenger) atau pengikatan ion-ion hidrogen. Contoh inhibitor katodik adalah hidrazin, tannin, dan garam sulfit.

3) Inhibitor campuran

Inhibitor campuran mengendalikan korosi dengan cara menghambat proses di katodik dan anodik secara bersamaan. Pada umumnya inhibitor komersial berfungsi ganda, yaitu sebagai inhibitor katodik dan anodik. Contoh inhibitor jenis ini adalah senyawa silikat, molibdat, dan fosfat.

4) Inhibitor teradsorpsi

Inhibitor teradsorpsi umumnya senyawa organik yang dapat mengisolasi permukaan logam dari lingkungan korosif dengan cara membentuk film tipis yang teradsorpsi pada permukaan logam. Contoh jenis inhibitor ini adalah merkaptobenzotiazol dan 1,3,5,7–tetraaza–adamantane.




Referensi :

Sunarya, Y. dan A. Setiabudi. 2009. Mudah dan Aktif Belajar Kimia 3 : Untuk Kelas XII Sekolah Menengah Atas / Madrasah Aliyah. Pusat Perbukuan, Departemen Pendidikan Nasional, Jakarta, p. 298.

0 komentar:

Posting Komentar